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Tree-Decomposition Methods

Tree-decomposition methods have been developed for many
different formalisms

Semiring Constraints
 

 

- Crisp constraints
- Probabilistic constraints
- Weighted constraints
- Possibilistic constraints
- Set constraints

Discrete Probabilities
 

 

- Bayesian Networks
- Credal Networks

Belief Functions
 

 

(Dempster-Shafer Theory)

Density Functions
 

 

- Gaussian Potentials
- Gaussian Hints

Relational Algebra

Possibility Potentials

Logic
 

 

- Propositional Logic
- Predicate Logic
- Assumption based Reasoning

Linear Systems
 

 

(Sparse Matrix Techniques)

- Affine Spaces
- Pos. def. Matrices

The same algorithms are re-invented for each formalism !
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Valuation Algebras

Axiomatic framework enabling generic tree-decomposition

Common characteristics of these formalisms:

Knowledge exists in pieces valuations

Knowledge refers to questions (variables) labeling

Pieces of knowledge can be combined

Knowledge can be projected

A valuation algebra therefore consists of:

Variables r & Valuations Φ

Combination ⊗ and Projection ↓
6 Axioms describing their behaviour
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The Inference Problem

Given a set of valuations {φ1, . . . , φn} and a query x , compute

(φ1 ⊗ φ2 ⊗ · · · ⊗ φn)↓x

Depending on the valuation algebra, this task ...

... evaluates Bayesian networks

... answers queries in relational databases

... solves linear equation systems

... checks satisfiability of constraint problems

... computes Fourier and Hadamard transforms
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Complexity Concerns

Example

Valuations: {φ1, φ2, φ3}
Domains: d(φ1) = {A,B,D}, d(φ2) = {B,C}, d(φ3) = {C}

Query: x = {A,C}

Warning!
Domains grow under combination !
If φ = φ1 ⊗ φ2 ⊗ φ3 then d(φ) = {A,B,C,D}

Complexity of ⊗, ↓ often increase exponentially with domain size

Algorithms must limit domain size of intermediate results
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The Promise of Tree-Decomposition Methods

Tree-decomposition methods find alternative factorizations:

(φ1 ⊗ φ2 ⊗ φ3)↓{A,C} =
(
φ
↓{A,B}
1 ⊗ φ2

)↓{A,C}
⊗ φ3

Here, the largest domain has only 3 variables

How can we find such factorizations ?  Join Trees
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Join Trees & Treewidth

Join Tree = Labeled Tree + Running Intersection Property

Each query x must be covered by some node

The domain of each factor φi must be covered by some node

AC

BCABD AC

C AC

BCABD ABC

C

φ3

φ1 φ2

AC

BCABD ABC

C

x

Join TreeLabeled Tree Covering Join Tree

Treewidth = largest join tree node 3
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Local Computation

Message-passing algorithm identifies the factorization:

φ3

φ1 φ2

x

AC

BCABD ABC

C

Valuation Algebras & Local Computation
Path Problems

The Promise of Tree-Decomposition Methods

Tree-decomposition methods find alternative factorizations:

(φ1 ⊗ φ2 ⊗ φ2)
↓{A,C} =

(
φ
↓{A,B}
1 ⊗ φ2

)↓{A,C}
⊗ φ3

Here, the largest domain has only 3 variables

Question: How can we find such factorizations?

Answer: Covering join trees deliver valid factorizations

M. Pouly Solving Factorized Path Problems 7/ 20

All results are bounded by the node labels ...

Treewidth determines complexity
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Quasi-Regular Semirings

Algebraic structure 〈A,+,×, ∗,0,1〉
+ and × are associative, + is commutative
× distributes over +: a× (b + c) = (a× b) + (a× c)

zero element: 0, unit element: 1
quasi-inverse a∗ such that a∗ = aa∗ + 1

Some Examples:

Boolean Semiring: 〈{0,1},∨,∧,0,1〉 with a∗ = 1
Tropical Semiring: 〈N ∪ {0,∞},min,+,∞,0〉 with a∗ = 0
Probabilistic Semiring: 〈[0,1],max, ·,0,1〉 with a∗ = 1
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Algebraic Path Problem

Input: Matrix M with values from a quasi-regular semiring

All-Pairs Algebraic Path Problem:

X = MX + I

Single-Source Algebraic Path Problem:

x = xM + b

M∗ and bM∗ are solutions to these fixpoint equations
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Quasi-Inverse Matrices

Theorem (Lehmann, 1976)

M∗ of a matrix M : n × n→ A over a quasi-regular semiring A can be
computed from the quasi-inverses of the semiring elements.

For example using the Floyd-Warshall-Kleene Algorithm

Complexity: O(n3)
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Factorized Path Problems

Considering decomposed graphs for path problems is natural
(e.g. shortest distance over multiple maps)

A sparse matrix can be regarded as a decomposition:
Berlin Paris Rome Berne

Berlin 0 1111 ∞ ∞
Paris ∞ 0 ∞ ∞
Rome 1181 ∞ 0 ∞
Berne ∞ 436 ∞ 0

=
0 Berlin Paris

Berlin 0 1111
Paris ∞ 0

 M1

0 Berne Paris
Berne 0 436
Paris ∞ 0

 M2

0 Rome Berlin
Rome 0 1181
Berlin ∞ 0

 M3

Shortest distance from Rome to Berlin:

M∗ = (M1 + M2 + M3)∗ ↓{Rome,Berlin}
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Path Problems and Sparse Matrix Techniques
Can this be done by tree-decomposition methods ?

1 Answer from sparse matrix people: (Radhakrishnan et al, 1992)

LDU & fill-ins restriction treewidth complexity

This forms a VA and is equal to LC (Kohlas & Pouly, 2009)

This tackles the single-source problem

Repeated application for the all-pairs / multi-pairs problem

2 There is a second possibility ...

Quasi-inverse matrices (may) form a valuation algebra

This tackles the all-pairs / multi-pairs problem directly

Marc Pouly A generic Approach for Sparse Path Problems 13/ 24



Algebraic Foundation of Tree-Decomposition Methods
Tree-Decomposition Methods for Path Problems

Conclusion

Algebraic Path Problem
Sparse Matrix Techniques for Path Problems
A new Family of Valuation Algebras

Valuation Algebra Operations

We only need to verify the Valuation Algebra Axioms !

Labeling: d(M∗) = s if M∗ : s × s → A

Projection: For t ⊆ d(M∗), (M∗)↓t is matrix restriction

Combination: For M∗1 and M∗2 with d(M∗1 ) = s and d(M∗2 ) = t

M∗1 ⊗M∗2 =
(

M∗↑s∪t
1 + M∗↑s∪t

2

)∗
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Valuation Algebra of Closures

Theorem (Pouly, 2008 )

If A is a Kleene Algebra, then this algebra of matrix closures
with combination and projection forms a valuation algebra

In addition to a quasi-regular semiring, we need

1 Idempotent addition: a + a = a for all a ∈ A

2 Closure Property: a∗∗ = a∗

Kleene Algebras guarantee these properties
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Solving Factorized Path Problems I

Input:

Matrices {M1, . . . ,Mn} taking values from a Kleene Algebra

Query set: {(s1, t1), . . . , (sm, tm)} ⊆ r × r

Naive Algorithm:

1 Compute M = M1 + M2 + . . .+ Mn

2 Compute M∗

3 Answer queries (table lookup)

Complexity: O(|s|3) where s = d(M1) ∪ . . . ∪ d(Mn)
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Solving Factorized Path Problems II

By Local Computation:

1 Construct join tree
2 Run generic local computation algorithm which returns

[(
M∗1 + . . .+ M∗n

)∗]↓{si ,ti}

Complexity: O(|V | · ω3) where ω is the treewidth
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Example

14 European countries  14 valuations

60 cities (max. 7 per country)  s = 60

Distances between neighboring capitals are the only
known international distances

Treewidth: ω = 13 join tree nodes: |V | = 23

Complexity: O(s3) versus O(|V | · ω3)

For comparison: 603 = 216‘000 and |V | · ω3 = 50‘531
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Handling Query Sets

LC requires that all queries are covered by the join tree.

In path problems we often have large query sets.

This increases the treewidth unnecessarily.

Instead, we ignore the query set for LC and compute
queries later on the propagated join tree.

 compilation and query phase.
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Query Answering Procedure

Input:

Input: propagated join tree (V ,E) with φ↓λ(i) for all i ∈ V .

Input: query (X ,Y )

Algorithm:

1 find a path (p1, . . . ,pk ) such that X ∈ λ(p1) and Y ∈ λ(pk );

2 initialize η = φ↓λ(p1)

3 for i = 1 . . . k − 1 do

η := φ↓λ(pi+1) ⊗ η↓λ(p1)∪(λ(pi )∩λ(pi+1))

4 return η↓{X ,Y};
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Query Answering Example

AC

EFABD AE

C

φ↓{C} φ↓{A,C} φ↓{A,E} φ↓{A,B,D} φ↓{E ,F}

1 Query: {C,F}, Path: {C} → {A,C} → {A,E} → {E ,F}
2 η = φ↓{C}

3 η = φ↓{A,C} ⊗ η↓{C}∪({C}∩{A,C})

4 η = φ↓{A,E} ⊗ η↓{C}∪({A,C}∩{A,E})

5 η = φ↓{E,F} ⊗ η↓{C}∪({A,E}∩{E,F}) = φ↓{C,E,F}

6 query answer: η↓{C,F}
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Query Answering Complexity

η := φ↓λ(pi+1) ⊗ η↓λ(p1)∪(λ(pi )∩λ(pi+1))

longest path has at most |V | nodes

largest domain: λ(p1) ∪ λ(pi+1)

complexity is bounded by 2× treewidth

O
(
|V | · (2 · ω)3

)
= O

(
|V | · ω3

)

same complexity as propagation !
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Conclusion

We deliver the algebraic foundation of sparse matrix
techniques for the solution of path problems

Existing methods are equal to tree-decomposition
algorithms in AI generic algorithms

Transfer of research results (e.g. updating)

We introduced a new VA based on matrix closures
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