
Distributed Databases in a Nutshell

Marc Pouly
Marc.Pouly@unifr.ch

Department of Informatics
University of Fribourg, Switzerland

Priciples of Distributed Database Systems
M. T. Özsu, P. Valduriez

Prentice Hall

February 2005
DDBMS – p.1/39



Motivation

Why distributed applications at all ?

Correspond to today’s enterprise structures.
Distributed computer technology
Reliability
Divide-and-Conquer, Parallelism
Economical reasons

DDBMS – p.2/39



Motivation

Why distributed applications at all ?

Correspond to today’s enterprise structures.
Distributed computer technology
Reliability
Divide-and-Conquer, Parallelism
Economical reasons

What is distributed ?

Processing logic
Functions (special functions delegated to special HW)
Data
Control of execution

⇒ All points are unified in the case of distributed databases.

DDBMS – p.2/39



Definitions

Distributed Database System (DDBS)
A collection of multiple, logically interrelated databases distributed over a
network.

Distributed Database Management System (DDBMS)
Software system that permits the management of the DDBS and makes
the distribution transparent to the user.

DDBMS – p.3/39



Definitions

Distributed Database System (DDBS)
A collection of multiple, logically interrelated databases distributed over a
network.

Distributed Database Management System (DDBMS)
Software system that permits the management of the DDBS and makes
the distribution transparent to the user.

DDBMS – p.3/39



Outlook I

This talk deals with:

Promises and New Problem Areas of a DDBMS

Architectures and Design of DDBMSs

Distribution design issues
Fragmentation
Allocation

Distributed query processing
Query decomposition
Data location
Global & local query optimization

What is expected to know:

Relation algebra, normal forms & relational calculus (SQL)

DDBMS – p.4/39



Outlook II

This talk does NOT deal with:

Relational algebra & relational calculus

Semantic data control
View management
Data security
Integrity control

Transaction management

Distribution concurrency control

Distributed DB reliability

Distributed non-relational DB & interoperability

DDBMS – p.5/39



Promises of DDBMSs I

Key-promises of a DDSMS

1. Improved performance.
2. Transparent management of distributed and replicated data.
3. Reliability through distributed transactions.

DDBMS – p.6/39



Promises of DDBMSs I

Key-promises of a DDSMS

1. Improved performance.
2. Transparent management of distributed and replicated data.
3. Reliability through distributed transactions.

Performance gain by:

Proximity of data location.

Parallelism in query processing:
Inter-Query: executes multiple query simultaneously.
Intra-Query: breaks-up queries into sub-queries and executes
them at different sites (according to data location).

DDBMS – p.6/39



Promises of DDBMSs II

Types of transparency:

Data transparency
Logical data independence
→ immunity of user app. to changes in logical DB structure.
Physical data independence
→ hiding details of storage structure.

DDBMS – p.7/39



Promises of DDBMSs II

Types of transparency:

Data transparency
Logical data independence
→ immunity of user app. to changes in logical DB structure.
Physical data independence
→ hiding details of storage structure.

Network transparency = Distribution transparency
→ hiding existence of the network.

DDBMS – p.7/39



Promises of DDBMSs II

Types of transparency:

Data transparency
Logical data independence
→ immunity of user app. to changes in logical DB structure.
Physical data independence
→ hiding details of storage structure.

Network transparency = Distribution transparency
→ hiding existence of the network.

Replication transparency
→ hiding existence & handling of copies.

DDBMS – p.7/39



Promises of DDBMSs II

Types of transparency:

Data transparency
Logical data independence
→ immunity of user app. to changes in logical DB structure.
Physical data independence
→ hiding details of storage structure.

Network transparency = Distribution transparency
→ hiding existence of the network.

Replication transparency
→ hiding existence & handling of copies.

Fragmentation transparency
→ hiding existence & handling of fragmented data.

DDBMS – p.7/39



New Problem Areas & Challenges

New problem areas implied by distribution:

Full replication vs. partial replication vs. no replication
Degree & strategy of fragmentation
Data distribution and relocation
Distributed query processing
Distributed directory management (metadata)

Distributed concurrency control

Reliability, crash recovery

Network problems

Heterogeneous DB

OS support problems

⇒ These areas are not isolated one from another ...
DDBMS – p.8/39



Architectures and design of DDBMSs I

Architectures are classified by:
Autonomity
Distribution
Heterogeneity

DDBMS – p.9/39



Architectures and design of DDBMSs I

Architectures are classified by:
Autonomity
Distribution
Heterogeneity

Autonomity of DDBMSs:
Distribution of control (not data). Degree of which individual DBMSs can
operate independently → 3 dimensions of autonomity:

tight integration
semiautonomous system
total isolation

DDBMS – p.9/39



Architectures and design of DDBMSs II

Distribution of DDBMSs:
Distribution of data → 3 dimensions of distribution:

no distribution
client / server (only servers have DB functionality)
peer-to-peer (full distribution)

Heterogeneity of DDBMSs:
Heterogeneity of data model and query language → 2 dimensions ...

peer-to-peer distributed homogeneous DBMS

client-server distributed homogeneous DBMS

DDBMS – p.10/39



ANSI Component Design Model

Component description:

1. Interpretation of user commands and out-
put formatting.

2. Tests integrity constraints, authorization.
Solvability of user query.

3. Determines execution strategy (minimize
cost function). Translates global query into
local ones.

4. Coordinates execution of distributed user
queries. Communicates with other 4s.

5. Chooses best data access path.

6. Ensures consistency of DB.

7. Physical access to DB. Buffering.
DDBMS – p.11/39



Fragmentation: Motivation

Relation is not a suitable unit of distribution.

DDBMS – p.12/39



Fragmentation: Motivation

Relation is not a suitable unit of distribution.

Application views are subsets of relations.

If multiple, distributed application access the same relation:
a) Relation is not replicated.

⇒ High volume of remote data access.
b) Relation is replicated.

⇒ High storage use & update problems.

Allow multiple transactions and parallel query execution.
⇒ Increases level of concurrency.

DDBMS – p.12/39



Fragmentation: Motivation

Relation is not a suitable unit of distribution.

Application views are subsets of relations.

If multiple, distributed application access the same relation:
a) Relation is not replicated.

⇒ High volume of remote data access.
b) Relation is replicated.

⇒ High storage use & update problems.

Allow multiple transactions and parallel query execution.
⇒ Increases level of concurrency.

Alternatives of fragmentation:

horizontal fragmentation & vertical fragmentation
hybrid fragmentation

DDBMS – p.12/39



Fragmentation: A first look

Key Name Population Life

c1 France 58973000 78.5
c2 Germany 82037000 77.5
c3 Switzerland 7124000 79.5
c4 Italy 57613000 78.4

Key Name Population Life

c1 France 58973000 78.5
c2 Germany 82037000 77.5

Key Name Population Life

c3 Switzerland 7124000 79.5
c4 Italy 57613000 78.4

Key Name

c1 France
c2 Germany
c3 Switzerland
c4 Italy

Key Population Life

c1 58973000 78.5
c2 82037000 77.5
c3 7124000 79.5
c4 57613000 78.4

DDBMS – p.13/39



Fragmentation: A first look

Key Name Population Life

c1 France 58973000 78.5
c2 Germany 82037000 77.5
c3 Switzerland 7124000 79.5
c4 Italy 57613000 78.4

Key Name Population Life

c1 France 58973000 78.5
c2 Germany 82037000 77.5

∪

Key Name Population Life

c3 Switzerland 7124000 79.5
c4 Italy 57613000 78.4

Key Name

c1 France
c2 Germany
c3 Switzerland
c4 Italy

!"Key

Key Population Life

c1 58973000 78.5
c2 82037000 77.5
c3 7124000 79.5
c4 57613000 78.4

DDBMS – p.13/39



Fragmentation II

Disadvantages of fragmentation:

Performance problem if an application uses multiple non-mutual
exclusive fragments.
Integrity control over multiple sites.

DDBMS – p.14/39



Fragmentation II

Disadvantages of fragmentation:

Performance problem if an application uses multiple non-mutual
exclusive fragments.
Integrity control over multiple sites.

Degree of fragmentation:

no fragmentation vs. full fragmentation (atomic tuples or columns).

⇒ compromise with respect to some parameters ...

DDBMS – p.14/39



Fragmentation II

Disadvantages of fragmentation:

Performance problem if an application uses multiple non-mutual
exclusive fragments.
Integrity control over multiple sites.

Degree of fragmentation:

no fragmentation vs. full fragmentation (atomic tuples or columns).

⇒ compromise with respect to some parameters ...

Correctness rules of fragmentation:

Averts semantic changes during fragmentation.

Completeness (lost-less decomposition)

Reconstruction: R =
⋃

Ri vs. R = !"Key Ri

Disjointness (for vertical fragmentation on non-key attributes).
DDBMS – p.14/39



Horizontal Fragmentation I

Fragmentation requires database informations (metadata).

There are two types of relations: OWNER and MEMBER.

Li are called LINKS.
Ex: owner(L1) = Country Relation, member(L1) = City Relation

Important are those owner which are not member of any link.

DDBMS – p.15/39



Horizontal Fragmentation II

2 Ways of Horizontal Fragmentation (HF)

primary HF: for owner - Relations
derived HF: for member - Relations

DDBMS – p.16/39



Horizontal Fragmentation II

2 Ways of Horizontal Fragmentation (HF)

primary HF: for owner - Relations
derived HF: for member - Relations

An important note:

Links are equi-joins ∼ Joins over attributes with only ”=” predicates.

Name P ·103

F 58973
DE 82037
CH 7124
I 57613

!"

City Country % P

Paris F 3.6

Berlin DE 4.1

Rome I 4.6

=

Country City P ·103 % P

F Paris 58973 3.6

DE Berlin 82037 4.1

I Rome 57613 4.6

Country !" Country.Name = City.Country City

DDBMS – p.16/39



Primary Horizontal Fragmentation I

Definition Simple Predicate:
For a relation R(A1, . . . , An), d(Ai) = di, a simple predicat pj has the form
pj : Ai θ value, where θ ∈ {=, %=, >, <,≤,≥} and value ∈ di.

DDBMS – p.17/39



Primary Horizontal Fragmentation I

Definition Simple Predicate:
For a relation R(A1, . . . , An), d(Ai) = di, a simple predicat pj has the form
pj : Ai θ value, where θ ∈ {=, %=, >, <,≤,≥} and value ∈ di.

Definition Minterm Predicate:
CNF of simple predicates.

DDBMS – p.17/39



Primary Horizontal Fragmentation I

Definition Simple Predicate:
For a relation R(A1, . . . , An), d(Ai) = di, a simple predicat pj has the form
pj : Ai θ value, where θ ∈ {=, %=, >, <,≤,≥} and value ∈ di.

Definition Minterm Predicate:
CNF of simple predicates.

Horizontal fragmentation of R consists of all tuples in R satisfying a given
minterm predicate.

Ri = σmi
(R)

where mi is the minterm predicate to obtain Ri.

⇒ Given a set of minterm predicates, there are as many horizontal
fragments as minterms in this set⇒ minterm fragments.

DDBMS – p.17/39



Primary Horizontal Fragmentation II

2 important aspects of simple predicates: completeness & minimality

DDBMS – p.18/39



Primary Horizontal Fragmentation II

2 important aspects of simple predicates: completeness & minimality

Completeness of simple predicates:
A set of simple predicates Pr is said to be complete if and only if there is
an equal probability of access by every application to any tuple belonging
to any minterm fragment defined by Pr.

DDBMS – p.18/39



Primary Horizontal Fragmentation III

Key Name Population Life

c1 France 58973000 78.5
c2 Germany 82037000 77.5

Key Name Population Life

c3 Switzerland 7124000 79.5
c4 Italy 57613000 78.4

R = σPopulation≥58′000′000(R) ∪ σPopulation<58′000′000(R)

One application, access by Population ! 58 · 106 ⇒ complete !

One application, access by Life ! 79 ⇒ not complete !

Solution: New fragmentation according to Life ! 79.

DDBMS – p.19/39



Primary Horizontal Fragmentation III

Key Name Population Life

c1 France 58973000 78.5
c2 Germany 82037000 77.5

∪

Key Name Population Life

c3 Switzerland 7124000 79.5
c4 Italy 57613000 78.4

R = σPopulation≥58′000′000(R) ∪ σPopulation<58′000′000(R)

One application, access by Population ! 58 · 106 ⇒ complete !

One application, access by Life ! 79 ⇒ not complete !

Solution: New fragmentation according to Life ! 79.

Minimality of simple predicates:
For all fragments Ri, Rj , there is at least one application accessing Ri and
Rj differently.

DDBMS – p.19/39



Primary Horizontal Fragmentation IV

Consequence of completeness & minimality:
completeness⇒ fragments are logically uniform.
minimality⇒ simple predicates do not produce unused fragments.

DDBMS – p.20/39



Primary Horizontal Fragmentation IV

Consequence of completeness & minimality:
completeness⇒ fragments are logically uniform.
minimality⇒ simple predicates do not produce unused fragments.

Determining the minterms is trivial ! But this set may be quite large ...

Fortunately, the set of minterms can be reduced.

This elimination is performed by identifying those minterms that might by
contradictory to a set of implications I.

DDBMS – p.20/39



Primary Horizontal Fragmentation V

Example: Attribute A with domain dA = {v1, v2}. Let P = {p1, p2} be a
set of simple predicates,
p1 : A = v1

p2 : A = v2

We build the set of possible minterms:
m1 : (A = v1) ∧ (A = v2) m3 : ¬(A = v1) ∧ (A = v2)

m2 : (A = v1) ∧ ¬(A = v2) m4 : ¬(A = v1) ∧ ¬(A = v2)

Clearly, m1 and m2 can be eliminated; they contradict to I.
The implication i ∈ I eliminating m1 is:
i : (A = v1) ⇒ ¬(A = v2)

DDBMS – p.21/39



Derived Horizontal Fragmentation I

owner-relations are fragmented according to the user queries.
member-relations depend on their owner(s).

Let L be a link. owner(L) = S and member(L) = R.
We want to fragment R.

Ri = R ! Si

DDBMS – p.22/39



Derived Horizontal Fragmentation I

owner-relations are fragmented according to the user queries.
member-relations depend on their owner(s).

Let L be a link. owner(L) = S and member(L) = R.
We want to fragment R.

Ri = R ! Si

This is a semi-join. It results in the subset of tuples in R that participate in
the join of R and Si. Formally,

Ri = R ! Si = πA(R "! Si)

where A is the domain of R.

⇒ Given the primary fragmentation, derived fragmentation is simple !

DDBMS – p.22/39



Derived Horizontal Fragmentation II

Often, a member has multiple owners ⇒ there are multiple possibilities for
derived fragmentation (according to each of the owners).

Choose the fragmentation
1. with better join-characteristics.
2. that is used in more applications.

⇒ Optimization problem.

DDBMS – p.23/39



Derived Horizontal Fragmentation II

Often, a member has multiple owners ⇒ there are multiple possibilities for
derived fragmentation (according to each of the owners).

Choose the fragmentation
1. with better join-characteristics.
2. that is used in more applications.

⇒ Optimization problem.

Criteria 1 has 2 motivations:
Join on fragments is faster than on main relation itself.
Fragments allow parallel query execution.

Criteria 2 facilitates the access of heavy users such that their total
impact on the system is minimized.

DDBMS – p.23/39



Vertical Fragmentation

Produces fragments R1, R2, . . . , Rn of R, each one containing a subset of
R’s attributes and it’s primary key.

DDBMS – p.24/39



Vertical Fragmentation

Produces fragments R1, R2, . . . , Rn of R, each one containing a subset of
R’s attributes and it’s primary key.

More complicated than horizontal fragmentation:
HF: n simple predicates⇒ 2n possible minterms = #fragments.
A lot of them can be eliminated.
VF: m non-primary key attributes⇒ B(m) ∼= mm fragments (m-th
Bell number).

DDBMS – p.24/39



Vertical Fragmentation

Produces fragments R1, R2, . . . , Rn of R, each one containing a subset of
R’s attributes and it’s primary key.

More complicated than horizontal fragmentation:
HF: n simple predicates⇒ 2n possible minterms = #fragments.
A lot of them can be eliminated.
VF: m non-primary key attributes⇒ B(m) ∼= mm fragments (m-th
Bell number).

No optimal solution⇒ heuristics.
Grouping: Starts by assigning each attribute to one fragment and at
each step, joins some fragments.
Splitting: Starts with a relations and splits according to the access
behavior of applications for each attribute.

DDBMS – p.24/39



Hybrid Fragmentation

Tree-structured partitioning ...

Level of nesting can be large - but in practice, levels do rarely exceed 2,
because normalized relations are already small.

DDBMS – p.25/39



The Allocation Problem

Set of fragments F = {F1, F2, . . . , Fn}, network consisting of sites
S = {S1, S2, . . . , Sm} and applications Q = {q1, q2, . . . , qq}.

⇒ Optimal distribution of F to S regarding Q.

DDBMS – p.26/39



The Allocation Problem

Set of fragments F = {F1, F2, . . . , Fn}, network consisting of sites
S = {S1, S2, . . . , Sm} and applications Q = {q1, q2, . . . , qq}.

⇒ Optimal distribution of F to S regarding Q.

Optimality is defined with respect to:

Minimal costs of
storing Fi at Sj

querying Fi at Sj

updating Fj

data communication

Performance
minimize response time of Si

maximize system throughput

⇒ Problem is NP-Complete

DDBMS – p.26/39



The Allocation Problem

Set of fragments F = {F1, F2, . . . , Fn}, network consisting of sites
S = {S1, S2, . . . , Sm} and applications Q = {q1, q2, . . . , qq}.

⇒ Optimal distribution of F to S regarding Q.

Optimality is defined with respect to:

Minimal costs of
storing Fi at Sj

querying Fi at Sj

updating Fj

data communication

Performance
minimize response time of Si

maximize system throughput

⇒ Problem is NP-Complete

There are no general models which take a set of fragments as input and produce a near
optimal allocation. All existing models make some assumptions to simplify the problem and
are applicable only to certain specific formulations.

DDBMS – p.26/39



Query Processing Overview

Transformation high-level query→ low-level query.
High-level queries typically in relation calculus (SQL-Expression).
Low-level queries in relation algebra + communication primitives.

DDBMS – p.27/39



Query Processing Overview

Transformation high-level query→ low-level query.
High-level queries typically in relation calculus (SQL-Expression).
Low-level queries in relation algebra + communication primitives.

In centralized databases ...

Find best relational algebra query among all equivalent transformations
⇒ computationally intractable⇒ Heuristics

In distributed databases ...

Additionally select the best site to process data and minimize network
traffic⇒ Increases solution space and problem complexity.

DDBMS – p.27/39



Query Processing Example I

2 Relations:
EMP(ENO, ENAME, TITLE)→ 400 tuples
ASG(ENO, PNO, RESP, DUR) → 1000 tuples

DDBMS – p.28/39



Query Processing Example I

2 Relations:
EMP(ENO, ENAME, TITLE)→ 400 tuples
ASG(ENO, PNO, RESP, DUR) → 1000 tuples

High-level query:

Find the names of employees who are managing a project.

DDBMS – p.28/39



Query Processing Example I

2 Relations:
EMP(ENO, ENAME, TITLE)→ 400 tuples
ASG(ENO, PNO, RESP, DUR) → 1000 tuples

High-level query:

Find the names of employees who are managing a project.

In SQL (Relational Calculus):

SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO AND RESP = ”Manager”

DDBMS – p.28/39



Query Processing Example I

2 Relations:
EMP(ENO, ENAME, TITLE)→ 400 tuples
ASG(ENO, PNO, RESP, DUR) → 1000 tuples

High-level query:

Find the names of employees who are managing a project.

In SQL (Relational Calculus):

SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO AND RESP = ”Manager”

2 equivalent low-level queries:

1.
∏
ENAME(σRESP = ′′Manager′′ ∧ EMP.ENO = ASG.ENO (EMP× ASG)

2.
∏
ENAME(EMP "!ENO (σRESP = ′′Manager′′(ASG)))

DDBMS – p.28/39



Query Processing Example II

Clearly, the second transformation is better (avoids Carthesian product).
We assume that both relations are horizontally fragmented.

EMP1 = σENO ≤ ′′E3′′(EMP) stored at site 1.
EMP2 = σENO > ′′E3′′(EMP) stored at site 2.
ASG1 = σENO ≤ ′′E3′′(ASG) stored at site 3.
ASG2 = σENO > ′′E3′′(ASG) stored at site 4.

The result of the query is expected at site 5.

DDBMS – p.29/39



Query Processing Example II

Clearly, the second transformation is better (avoids Carthesian product).
We assume that both relations are horizontally fragmented.

EMP1 = σENO ≤ ′′E3′′(EMP) stored at site 1.
EMP2 = σENO > ′′E3′′(EMP) stored at site 2.
ASG1 = σENO ≤ ′′E3′′(ASG) stored at site 3.
ASG2 = σENO > ′′E3′′(ASG) stored at site 4.

The result of the query is expected at site 5.

2 equivalent distributed execution strategies are considered. The costs for
each strategy is computed using a total-cost function:

1 tuple acces = 1 unit
1 tuple transfer = 10 units

DDBMS – p.29/39



Query Processing Example III

(EMP1 ∪ EMP2) !"ENO σRESP=′′Manager′′(ASG1 ∪ ASG2)

DDBMS – p.30/39



Query Processing Example III

(EMP1 ∪ EMP2) !"ENO σRESP=′′Manager′′(ASG1 ∪ ASG2)

R1 = σRESP=′′Manager′′(ASG1) R2 = σRESP=′′Manager′′(ASG2)

R3 = EMP1 !"ENO R1 R4 = EMP2 !"ENO R2

R3 ∪ R4

DDBMS – p.30/39



Query Processing Example III

(EMP1 ∪ EMP2) !"ENO σRESP=′′Manager′′(ASG1 ∪ ASG2)

Costs: 23000 units

R1 = σRESP=′′Manager′′(ASG1) R2 = σRESP=′′Manager′′(ASG2)

R3 = EMP1 !"ENO R1 R4 = EMP2 !"ENO R2

R3 ∪ R4

Costs: 460 units
DDBMS – p.30/39



Query Processing Architecture

1. Calculus query on distributed re-
lations.

2. Algebraic query on distributed re-
lations.

3. Algebraic query on distributed
fragments.

4. Optimized fragment query with
communication primitives.

5. Optimized local query.

DDBMS – p.31/39



Query Decomposition I

Validates sematics (ex. types of operations, existance of relations, ...)

Transforms WHERE-clause to CNF.

Eliminates redundancy in WHERE-clause (logical idempotency rules).

Construction of operator tree.

Optimizes operator tree by applying transformation rules.

Rewrites operator tree in relation algebra.

DDBMS – p.32/39



Query Decomposition II

!"ENO

EMPASG

PROJ

!"PNO

σENAME != ′′Mueller′′

σPNAME =
′′CAD′′

σDUR = 12 ∨ DUR = 24

∏
ENAME Optimization rules:

1. Separate unary operations.

2. Regroup unary operations on
same relation.

3. Commute binary with unary op-
erations ⇒ Unary operations are
pushed down.

4. Order unary operations, perform
first selections, then projections.

5. ...

DDBMS – p.33/39



Data Localization

Adds distribution to query.

Transforms algebraic query on global relations to algebraic query on
physical fragments.

Applies fragment reconstruction rules (∪ or "!) to query.

Eliminates selections / projections if they contradict fragment
predicats.

DDBMS – p.34/39



Global Optimization I

After data localization, the global query can be executed by adding
communication primitives in a systematic way. But the ordering of these
primitives again creates many equivalent strategies.

DDBMS – p.35/39



Global Optimization I

After data localization, the global query can be executed by adding
communication primitives in a systematic way. But the ordering of these
primitives again creates many equivalent strategies.

The problem of finding a good strategy is so difficult that in most cases, all
effort is concentrated rather on avoiding bad strategies that on finding a
good one.

DDBMS – p.35/39



Global Optimization I

After data localization, the global query can be executed by adding
communication primitives in a systematic way. But the ordering of these
primitives again creates many equivalent strategies.

The problem of finding a good strategy is so difficult that in most cases, all
effort is concentrated rather on avoiding bad strategies that on finding a
good one.

Again, the heuristics are all based on cost-functions which use database
statistics. Because this optimization step concerns communication
primitives, communication cost is a central point.

Expressing the costs to transmit relation R from site S1 to site S2:

size(R) = card(R) ∗ length(R)

where length(R) is the length (in bytes) of a single tuple.

DDBMS – p.35/39



Global Optimization II

Optimization in 3 steps:

1. Build search space (all possible execution strategies represented as
operator trees) ∼ O(n!) for n relations.

2. Apply cost function to each QEP = Query Execution Plan
3. Choose the best !

DDBMS – p.36/39



Global Optimization II

Optimization in 3 steps:

1. Build search space (all possible execution strategies represented as
operator trees) ∼ O(n!) for n relations.

2. Apply cost function to each QEP = Query Execution Plan
3. Choose the best !

Carthesian products and joins have most influence on total costs. ⇒
Optimization is concentrated on join trees = operator trees whose nodes
are joins or Carthesian products.

DDBMS – p.36/39



Global Optimization II

Optimization in 3 steps:

1. Build search space (all possible execution strategies represented as
operator trees) ∼ O(n!) for n relations.

2. Apply cost function to each QEP = Query Execution Plan
3. Choose the best !

Carthesian products and joins have most influence on total costs. ⇒
Optimization is concentrated on join trees = operator trees whose nodes
are joins or Carthesian products.

Building the search space:
dynamic programming: builds all possible plans. Partial plans which
are not likely to lead to a good plan are pruned.
randomized strategies: apply dynamic prog. to obtain
”not-so-bad-solution” and investigate neighboring trees (by
exchanging relations).

DDBMS – p.36/39



Global Optimization III

The join tree shape is a useful indicator: linear trees⇒ no parallelism,
bushy trees⇒ full parallelism.

Discussing the cost functions goes beyond the scope of this presentation
(case studies)...

DDBMS – p.37/39



Local Optimization

After global optimization, each sub-query is delegated to the appropriate
site (due to the communication primitives). Clearly, all sites can
themselves optimize their local queries according to their additional
knowledge about their data.

This is local optimization ...

DDBMS – p.38/39



Discussion

Questions ?

DDBMS – p.39/39


