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Semirings

Algebraic structure with two operations + and × over a set A.
+ and × are associative
+ is commutative
× distributes over +: a× (b + c) = (a× b) + (a× c)

If × is commutative too commutative semiring
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Examples I

Arithmetic Semirings: 〈R,+, ·〉, 〈Z,+, ·〉, 〈N,+, ·〉, . . .
Boolean Semiring: 〈{0,1},∨,∧〉
Tropical Semiring: 〈N,min,+〉
Arctic Semiring: 〈N,max,+〉
Possibilistic Semiring: 〈[0,1],max, ·〉
Powerset lattice: 〈P(S),∪,∩〉
Bottleneck Semiring: 〈R,max,min〉
Truncation Semiring: 〈{0, . . . , k},max,min{a + b, k}〉
Lukasiewicz Semiring: 〈[0,1],min,max{a + b − 1,0}〉
Division Semiring: 〈N, lcm,gcd〉
Formal Languages: 〈P(Σ∗),∪, ◦〉 not commutative
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Examples II

Vectors over semirings form a semiring

Matrices over semirings form a semiring

Polynomials over semirings form a semiring

...
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Today’s Breakfast Lessons

2 reasons why computer scientists are interested in semirings:
they reduce problem complexity

they enable generic problem solving

2 reasons why mathematicians are interested in semirings:
ordered semirings are fundamentally different from fields

new research fields thanks to applications in CS
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Lesson 1:

Reducing Problem Complexity

Marc Pouly Semirings for Breakfast 6/ 27



Bayesian Networks

Visit to 
Asia Smoking

Tuberculosis

pos. X-ray

Either
T or L

Lung 
Cancer Bronchitis

Dyspnoea

p(t|a) = 0.05
p(t|a) = 0.01

p( x|e) = 0.98
p( x|e) = 0.05

p(d|e, b) = 0.9
p(d|e, b) = 0.7
p(d|e, b) = 0.8
p(d|e, b) = 0.1

p(s) = 0.4

p(l |s) = 0.1
p(l |s) = 0.01

p(b|s) = 0.6
p(b|s) = 0.3

p(a) = 0.01
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Medical Diagnostics

A patient turns to a doctor and complains about shortness of
breath (Dyspnoea). Also, she confirms a recent trip to Asia.
What is the probability that she suffers from Bronchitis?

p(B|A,D) =
p(A,B,D)

p(A,D)

This requires to compute

p(A,B,D) =
∑

E ,L,S,T ,X

p(A,B,D,E ,L,S,T ,X )

with

p(A,B,D,E ,L,S,T ,X ) = p(A)× p(T |A)× · · · × p(D|E ,B)
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Complexity Concerns

p(A,B,D,E ,L,S,T ,X ) is a table with 28 values

A joint prob. distribution over n variables has 2n entries

Quick Medical Reference has more than 5000 variables

Solution: Apply the distributive law:

p(A,B,D) =
∑

E ,L,S,T ,X

p(A,B,D,E ,L,S,T ,X )

is equal to

p(A)
∑

E

p(D|B,E)
∑

X

p(X |E)
(∑

T

p(T |A)
(∑

L

p(E |L,T )
(∑

S

p(L|S)p(B|S)p(S)
)))
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Complexity Concerns

p(A)
∑

E

p(D|B,E)
∑

X

p(X |E)
(∑

T

p(T |A)
(∑

L

p(E |L,T )
(∑

S

p(L|S)p(B|S)p(S)
)))

The largest intermediate table involves 4 variables

Semirings allow to reduce complexity.

Intuitively, compare the number of operations

a× (b + c) = (a× b) + (a× c)

The fusion algorithm produces such factorizations
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Lesson 2:

Generic Reasoning
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Generic Reasoning

The fusion algorithm is only based on the properties of a
commutative semiring

We can exchange the semiring in the problem description

Example: take 〈[0,1],max, ·〉 instead of 〈R,+, ·〉

max
E,L,S,T ,X

p(A,B,D,E , L,S,T ,X) =

p(A) max p(D|B,E) max p(X |E)
(

max p(T |A)
(

max p(E |L,T )
(

max p(L|S)p(B|S)p(S)
)))

This identifies the value of the most probable configuration

Marc Pouly Semirings for Breakfast 12/ 27



Beyond Bayesian Networks

The same computational problem over different semirings:
〈{0,1},∨,∧〉 crisp constraint reasoning
〈N,min,+〉 weighted constraint reasoning
〈[0,1],max, ·〉 possibilistic constraint reasoning
〈P(S),∪,∩〉 assumption-based reasoning

Different semirings different semantics of
the same problem
the same algorithm
the same complexity
the same implementation
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Lesson 3:

A fundamentally different Branch
of Mathematics
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Semirings and Order I

We introduce the following relation on a semiring:

a � b if, and only if ∃c ∈ A such that a + c = b

Reflexivity: a � a

Transitivity: a � b and b � c ⇒ a � c

Conclusion: � is a preorder called canonical preorder

All semirings provide a canonical preorder
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Semirings and Order II

In general, � is not antisymmetric, i.e.

a � b and b � a ; a = b

Example: in 〈Z,+, ·〉 we have −1 � 2 and 2 � −1

Does not only hold for 〈Z,+, ·〉 but for all structures with
inverse additive elements

Antisymmetry of � contradicts the group structure of (A,+)
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Dioids

This splits algebra into:
semirings with additive inverse elements (e.g. fields)

semirings with a canonical partial order called dioids

Dioid theory is fundamentally different from maths over fields

Are dioids of (practical) importance ?
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Examples of Dioids

Theorem
Semirings with idempotent + (i.e. a + a = a) are always dioids.

Arithmetic Semirings: 〈R,+, ·〉, 〈Z,+, ·〉, 〈N,+, ·〉, . . .
Boolean Semiring: 〈{0, 1},∨,∧〉
Tropical Semiring: 〈N,min,+〉
Arctic Semiring: 〈N,max,+〉
Possibilistic Semiring: 〈[0, 1],max, ·〉
Powerset lattice: 〈P(S),∪,∩〉
Bottleneck Semiring: 〈R,max,min〉
Truncation Semiring: 〈{0, . . . , k},max,min{a + b, k}〉
Lukasiewicz Semiring: 〈[0, 1],min,max{a + b − 1, 0}〉
Division Semiring: 〈N, lcm, gcd〉
Formal Languages: 〈P(Σ∗),∪, ◦〉 not commutative
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Lesson 4:

Application of Dioid Theory
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Shortest Distance from S to T

C

B D

TAS
9

3

4

6

2

1 5

Compute

9 + 4 = 13
1 + 6 + 5 = 12

1 + 2 + 3 + 5 = 11

and then

min{13,12,11} = 11
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Connectivity of S and T

C

B D

TAS
0

0

1

1

1

1 1

Compute

min{0,1} = 0
min{1,1,1} = 1

min{1,1,0,1} = 0

and then

max{0,1,0} = 1
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Largest Capacity from S to T

C

B D

TAS
3.4

3.5

4.5

5.5

4.2

3.6 5.1

Compute

min{3.4,4.5} = 3.4
min{3.6,5.5,5.1} = 3.6

min{3.6,4.2,3.5,5.1} = 3.5

and then

max{3.4,3.6,3.5} = 3.6
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Maximum Reliability from S to T

C

B D

TAS
0.4

1.0

0.8

0.2

0.9

0.9 0.7

Compute

0.4 · 0.8 = 0.32
0.9 · 0.2 · 0.7 = 0.126

0.9 · 0.9 · 1.0 · 0.7 = 0.567

and then

max{0.32,0.126,0.567} = 0.567
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Language leading from S to T in the Automaton

C

B D

TAS

{b}

{c}

{b}

{c}

{a} {a}

{a}

Compute

{a} ◦ {c} = {ac}
{a} ◦ {b} ◦ {a} = {aba}

{a} ◦ {c} ◦ {b} ◦ {a} = {acba}
and then⋃

{{ac}, {aba}, {acba}} = {ac,aba,acba}
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The Algebraic Path Problem

These are path problems over different semirings

If M denotes the matrix of edge weights in the graph,
all-pairs path problems are solved by computing

D =
⊕
r≥0

Mr = I + M + M2 + M3 + . . .

This is an infinite series of semiring matrices

A solution is obtained if the series converges. This
requires the notion of a topology
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Semiring Topology

The partial order in dioids allows to introduce a particular
topology and to study the convergence of the series

Theorem
If the limit D exists, then it corresponds to the least solution to
the fixpoint equation X = MX + I

Hence, arbitrary path problems are computed by a single
algorithm that solves a dioid fixpoint equation system

This was the hour of birth of semiring topology
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Recap of today’s Breakfast Lessons

2 reasons why computer scientists are interested in semirings:
they reduce problem complexity

they enable generic problem solving

2 reasons why mathematicians are interested in semirings:
ordered semirings are fundamentally different from fields

new research fields thanks to applications in CS
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